
Presented at the Second International Conference on
Formal Methods and Models for Codesign (MEMOCODE 2005)

Extended Abstract: Organizing Automaton Specifications
to Achieve Faithful Representation

Elizabeth Leonard and Myla Archer
Center for High Assurance Computer Systems, Code 5546
Naval Research Laboratory, Washington, DC 20375 USA

archer,leonard @itd.nrl.navy.mil

1 Introduction
Motivation. In using models for verification, an impor-
tant question is how faithful a model is to the thing mod-
eled. In 2002 and 2003, we specified two applications as
automaton models: the TESLA multicast stream authenti-
cation protocol [7] and a portion of the Security-Enhanced
Linux (SELinux) operating system [6]. Both models used
a single reference variable to capture essentially all of the
information about the actual state of the system. Additional
state variables in the models were defined to provide ac-
cess to some of the reference variable information in a form
that made specifying system transitions and reasoning about
the system easier. Having used the same organizational ap-
proach to advantage in defining automaton models for two
different applications, we wondered if this approach would
have benefits in other applications. We decided to specify
the well-known IEEE 1394 leader election algorithm (Tree
Identify Protocol) [5] using this modeling technique to see
if it would provide any benefit.

The reference variable approach. We call our approach
to organizing specifications of automaton models the refer-
ence variable approach. A reference variable is a variable
that captures most of the essential information about an au-
tomaton state. Variable types of sufficient complexity for
this purpose typically involve sets or functions, and thus are
definable only in higher-order logic. For example, the ref-
erence variable in the SELinux model is a set of objects that
are members of a recursive datatype, some of whose mem-
bers themselves have set components. The objects represent
the processes, files, and so on currently present in the oper-
ating system. Thus, the set of objects naturally captures the
state of an operating system.

For modeling any system using our approach, the speci-
fier must first choose a reference variable that captures the
state of the actual system in a natural way. Because the
reference variable will usually be complex, auxiliary vari-
ables are helpful in defining the preconditions and effects
of state transitions and expressing properties (e.g., invari-
ants) one wants to prove about the system. Additionally,
one may choose auxiliary variables with an eye towards sys-

This research is funded by ONR

tem verification using abstraction. Some of these auxiliary
variables (derived variables) can be defined by expressions
involving the reference variable. Other variables, which we
will call shadow variables, have a relationship to the refer-
ence variable that is more difficult to express; for example,
they may capture a part of the state that can only be defined
in terms of the reference variable using existential quantifi-
cation. For purposes of reasoning, the current value of a
shadow variable is most easily retrieved if its value is main-
tained by directly updating the shadow variable along with
the reference variable. A state invariant (proved only once)
can establish that a particular relationship is maintained be-
tween the shadow variable and the reference variable.

2 Applying the Approach: Three Examples
The TESLA Protocol. TESLA [7] is a multicast stream
authentication protocol in which the authentication of pack-
ets is based on keys, key commitments, and timing. Our
model of TESLA for use in a theorem prover, based on the
reference variable method, is described in [1]. TESLA as-
sumes both an authentic sender S and an adversary sender
A, where the adversary has full control over the network and
tries to spoof the receiver with fake packets.

A natural reference variable to capture the current state
of TESLA is the entire history of the protocol up to the last
send or receive event. The history can be represented as the
set of sent packets, annotated with sender, send time, and
receive time if any. The shadow variables needed included
the list PL of packets sent by the authentic sender and the
sets of keys K and key commitments KC that were included
in some sent packet. K and KC were needed to express the
power of the adversary; in the model, this is done in the
precondition of the adversary’s send action. PL was espe-
cially important in formulating and proving two properties
essential to the proof of correctness of the protocol. Its use
circumvented long existence proofs involving the number of
sent packets in the history that were sent by S and a packet
that had been sent by S in a previous state.

SELinux Security Policies. SELinux [6] extends the
Linux operating system with a flexible capability for secu-
rity. We developed an automaton model of SELinux [3] that
can be used to analyze policy specifications written in the

green
Text Box
NRL Release Number 05-1226-2046



SELinux policy language. Because part of the policy defi-
nition is embedded in the operating system code, the model
represents the operating system with the policy included.

The natural reference variable to model the operating
system is a set of objects representing the processes, files,
file descriptors, and so on in the system at a given time.
Shadow variables keep track of the existence of various ob-
jects in the system, such as whether there is a process with
a given process ID. Other shadow variables are used to eas-
ily produce the object having given identifying information;
e.g., one shadow variable takes a process ID and returns the
process with that process ID. The shadow variables are used
in defining actions and properties, and we anticipate using
them in abstractions.

We have verified several properties for the example secu-
rity policy that accompanies the SELinux release. Although
the policy rules take several pages to state, we have verified
16 assertions about whether certain access permissions are
ever allowed that are relevant to the portion of SELinux that
we have modeled. We have also proved one state invari-
ant and have just begun to prove additional invariants about
SELinux. So far, the complexity of the model has not had a
noticeable impact on the theorem prover.

Leader Election for IEEE 1394. Verification of the
leader election protocol for the IEEE 1394 FireWire bus,
particularly its tree identify phase TIP, has been a much
studied problem: see, e.g., [5] and the special issue [4].
In [2], we revisited the verification in [5]. In this work, as a
new case study (LE), we respecified the protocol using the
reference variable method and proved leader uniqueness.

The protocol represents the bus as a graph in which each
node waits for “be my parent” requests from its neighbors
until only one neighbor has not sent a request, at which
point the node sends a “be my parent” request to its remain-
ing neighbor. Contention to be the leader can arise when
there are only two parentless nodes remaining. In specifica-
tions of the protocol without timing, a contention resolution
step makes an arbitrary choice of parent.

The protocol runs on a fixed graph G. In the protocol,
actions of nodes are based solely on their local knowledge
of their own status and their neighbors’ status. Hence, local
knowledge can be used as the reference variable. In particu-
lar, the reference variable can be expressed as an element of
type Annotated Graph, whose elements are essentially
snapshots of the local knowledge of all nodes in G. We did
not need any shadow variables to specify actions or proper-
ties.

However, we did obtain some benefits from the use of a
reference variable. First is the confidence that we captured
the protocol without any extraneous artifacts (e.g., message
queues). Second, we are able to express connectedness and
acyclicity properties and use them in proofs without going
outside the formalism. Moreover, one can potentially prove
properties about measures of G computed from its annota-

tions. Useful properties would include: (1) if G is finite then
some defined measure of the state of LE is finite, and (2)
every transition of LE decreases the measure. Such lemmas
would be useful in mechanizing the proof that eventually
some node will have root status.

3 Conclusion
We have developed an approach to organizing automa-

ton specifications in which a reference variable captures the
essential state and shadow variables are used to facilitate ex-
pressiveness. We have applied our approach in specifying
automaton models for three different examples. In all three
cases, the resulting specification bears an obvious close re-
lationship to the actual system being modeled.

The specifications we produced are possible to formulate
only in higher order logic. Nevertheless, our experience has
shown that it is feasible to establish properties of such spec-
ifications in an interactive mechanical theorem prover. In
our approach, the specification and reasoning can be orga-
nized so that the harder parts of the reasoning (e.g., involv-
ing existence proofs) need only be done once. The rela-
tionships between the reference and shadow variables are
proven first. After this, many properties can be specified in
terms of the simpler shadow variables, greatly simplifying
their proofs. Though our method is not generally suited for
use with other types of analysis tools, it can provide indirect
support by establishing relationships between the specifi-
cation and abstractions “farmed out” to automatic analysis
tools.

The reference variable approach allows system models
that are clearly faithful, provide a basis for relating separate
abstractions, and permit one to express and use high level
properties of systems in properties and their proofs. A spec-
ification with an obvious correlation to the actual system
can be helpful for convincing evaluators in a certification
process that the model accurately reflects the actual system.

References
[1] M. Archer. Proving correctness of the basic TESLA multicast

stream authentication protocol with TAME. In Wk. on Issues
in the Theory of Security (WITS’02), Portland, OR, Jan. 2002.

[2] M. Archer, C. Heitmeyer, and E. Riccobene. Proving invari-
ants of I/O automata with TAME. Automated Software Engi-
neering, 9(3):201–232, 2002.

[3] M. Archer, E. Leonard, and M. Pradella. Analyzing Security-
Enhanced Linux policy specifications. In IEEE 4th Int’l Wk.
on Policies for Distr. Systs. and Netwks. (POLICY 2003).

[4] J. Cooke, et al., eds. Formal Aspects of Computing, volume
14(3). Springer, April 2003.

[5] M. Devillers, et al. Verification of a leader election protocol—
formal methods applied to IEEE 1394. Formal Methods in
System Design, 16(3):307–320, June 2000.

[6] P. Loscocco and S. Smalley. Integrating flexible support for
security policies into the Linux operating system. Tech. Rept.,
National Security Agency, Jan. 2, 2001.

[7] A. Perrig, et al. Efficient authentication and signing of mul-
ticast streams over lossy channels. In Proc. of IEEE Security
and Privacy Symposium (S&P2000), pages 56–73, May 2000.




